
A Method of Analyzing a Baseball Pitcher’s Performance
Based on Statistical Data Mining

D. Ezra Sidran
Dept. of Computer Science

University of Iowa
Iowa City, IA

dsidran@cs.uiowa.edu

ABSTRACT
In this paper, we describe a method for extracting pitchers,
pitches, pitch results (e.g. hits, foul balls, balls, called
strikes, etc.) from the EVN data format and outputting the
results in a format that allow them to be imported and
graphed in a Microsoft Excel ™ program.

Categories and Subject Descriptors
I.2.1 Applications and Expert Systems

Keywords
Data mining, statistical analysis, baseball, pitcher

INTRODUCTION
American baseball is unique among the world’s sports in
that for over a century every play of every professional
baseball game has been meticulously recorded. Further-
more, since, about 1965, the detail of the recorded games
has included every pitch thrown and the results of the pitch.
This has resulted in a staggering amount of data which has
not, as yet, been fully data-mined.

The sport of baseball attracts many statisticians (both ama-
teur and professional). [1] [2] [3] [4] Also, numerous
books, [5] [6] which are compendiums of baseball statis-
tics, have been published. A major goal of this work is the
hope of predicting the future performance of baseball play-
ers on their past statistics.

One of the most intriguing problems that a baseball man-
ager faces is the decision as to when a tiring, or faltering,
pitcher should be removed from the game and replaced by
a substitute pitcher. This decision making process is made
more difficult by the fact that the substitute pitcher needs
about 10 minutes to “warm up” before he can enter the
game. However, the substitute pitcher should not warm up
for an excessive length of time unless he becomes too fa-
tigued. Consequently, there is a need for a function that can
determine in advance when a pitcher is about to falter and
when the substitute pitcher should begin warming up.

Our first step in the development of this function is the
creation of a new metric to measure a pitcher’s perform-
ance from data extracted from recorded baseball games.
This new metric is then output in a format which allows us
to create a visual representation of the metric for analysis.

We are hopeful that analysis of these metrics will assist in
the creation of a function that will predict when a baseball
pitcher should be removed from a game before he falters
and tires.

The metric that we use to analyze a pitcher’s performance
is the accuracy of every pitch thrown and the results of that
pitch.

We are hopeful that the development of this function will
be a significant contribution to baseball management strat-
egy.

This introduction is followed by sections describing the
data files used, problems related to extracting the data from
the files, the algorithm for extracting the data, calculating
the metrics and outputting the metrics in the desired format,
examples, future work and a conclusion.

THE BASEBALL DATA FILES
The files employed in this experiment were provided by the
Retrosheet Organization, a volunteer organization that has
collected and posted on the Internet Play-by-Play files of
every Major League professional baseball game from 1965
to 1992. [7]. While these files are extremely detailed, they
are not organized in a traditional relational database format.
Indeed, these files (called EVN from their extension) are
simply ASCII text files in which each line starts with an
identifier keyword and the variable length and variable
number of data fields are separated by commas. Each EVN
file contains records of all the games played by a particular
team for an entire year; consequently each EVN file con-
tains the records for over 160 games each. Some examples
below:
id,CHN199204100
This is an example of an identification data field; in this
case a game played by the Chicago Cubs of the National
Baseball League on April 10, 1992.
info,hometeam,CHN
This is an example of an information field showing that the
home team was the Chicago Cubs.

start,lankr001,"Ray Lankford",0,1,8

This is an example of a starting lineup information field; in
this case showing that a player named “Ray Lankford”,
who has a corresponding ID of lankr001, started for the
visiting team playing the position of center field and batted
first.
play,1,0,lankr001,22,BFCFFBFS,K
This is an example of a ‘play’ information field; in this
case the information can be read as: first inning, visiting
team, player at bat = lankr001, the ‘count’ was two balls
and two strikes, the sequence of pitches was ball, foul ball,
called strike, foul ball, foul ball, ball, foul ball, swinging
strike, strike-out.
sub,vizcj001,"Jose Vizcaino",1,1,6
This is an example of a ‘substitution’ information field; in
this case showing that “Jose Vizcaino” with id vinzcj001,
came into the game as a pitcher for the home team in the 6th
inning.

There are also other information fields, such as ‘com’ for
comments, and ‘data’ for final box scores which we ig-
nored for this experiment.

PROBLEMS RELATED TO EXTRACTING
THE DATA FROM THE EVN FILES
The EVN data files are large (> 780 kb) ASCII files. An
analysis of one such file, for the 1992 Chicago Cubs sea-
son, showed that it contained a large number of ‘events’
that had to be extracted for analysis:

Number of games in file = 162
Number of runs in file = 1,214
Number of plays in file = 14,723
Number of walks in file = 1,103
Number of singles in file = 4,176
Number of doubles in file = 3,369
Number of triples in file = 229
Number of homers in file = 211
Number of hit batsmen in file = 75
Number of stolen bases in file = 193
Number of strike-outs in file = 1,731
Number of sacrifice-hits in file = 0
Average runs per game = 7.493827 (both teams)
Average plays per run = 12.127677

Because the data fields were of variable length, could ap-
pear anywhere throughout the file and could only be identi-
fied by parsing the keyword identifier the creation of an
algorithm for extracting the necessary data from the EVN
files was not a trivial matter.

THE ALGORITHM FOR EXTRACTING
THE DATA FROM THE EVN FILES
Following is the algorithm for extracting the data from the
EVN files. The algorithm was designed with a number of
‘defined’ values which appear in all capital letters such as
WALK, SINGLE, DOULBE, etc. This allows for easily

changing the value of these metrics (as we shall see in the
next section).

Algorithm for extracting data from EVN files:
Note: This symbol is used to represent appending a
string to another string.
NumGames, NumPlays , NumStolen, NumSingles, NumDoubles, Num-
Triples, NumHomers, NumHitBatsmen, NumKs 0
HomePitcherStats, VisitorPitcherStats Ø
PitchFlag FALSE
while a line of text can be read from the EVN file
 do read line of text
 if the first 2 chars of line of text = “id”
 NumGames NumGames + 1
 HomePitcherStats GameID
 VisitorPitcherStats GameID

 if the first 5 chars of line of text = “start”
 if the second to the last char of line of text = “1”
 // This is the notation for the pitcher
 if the sixth from the last char of line of text = “1”
 // This is the notation for the Home Team
 HomePitcherStats HomePitcher.ID
 HomeBalls, HomeStrikes, HomePitcherScore 0;
 HomePitcherStats “,”
 Write HomePitcherStats to output file

 if the sixth from the last char of line of text = “0”
 // This is the notation for the Visitor Team
 VisitorPitcherStats VisitorPitcher.ID
 VisitorBalls, VisitorStrikes, VisitorPitcherScore 0;
 VisitorPitcherStats “,”
 Write VisitorPitcherStats to output file

 if the first 3 chars of line of text = “sub”
 CommaCount 0
 while CommaCount < 3
 do read each char in line of text
 if char[i] = “,”
 CommaCount CommaCount + 1
 if the second to the last char of line of text = “1”
 // This is the notation for the pitcher
 if the sixth from the last char of line of text = “1”
 // This is the notation for the Home Team
 HomePitcherStats HomePitcher.ID
 HomeBalls, HomeStrikes, HomePitcherScore 0
 HomePitcherStats “,”
 Write HomePitcherStats to output file

 if the sixth from the last char of line of text = “0”
 // This is the notation for the Visitor Team
 VisitorPitcherStats VisitorPitcher.ID
 VisitorBalls, VisitorStrikes, VisitorPitcherScore 0
 VisitorPitcherStats “,”
 Write VisitorPitcherStats to output file

 if the first the first four letters of the line of text = “play”
 NumPlays NumPlays +1
 if the seventh char of the line of text = ‘0’
 AtBat VISITOR;
 else
 AtBat HOME;
CommaCount, i 0
 while CommaCount < 5 and PitchFlag = FALSE
 do read each char in line of text
 i i + 1

 if char[i] = “,”
 CommaCount CommaCount + 1
 PitchFieldStart = i+1;
 PitchFlag TRUE;
 if (CommaCount = 6) // Reading the play field
 PitchFieldEnd i - 1;
 PitchFlag FALSE;

copy the string of the playfield into the string PitchFieldLine
for j 0, j <= length of PitchLineLength, j j + 1
switch on PitchField[j]
case 'C': // Pitch was a called strike
TotalPitches TotalPitches +1

 if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore +1
 VisitorPitcherStats VisitorPitcherScor
 else
 HomePitcherScore HomePitcherScore +1
 HomePitcherStats HomePitcherScore

case 'S': // Pitch was a swinging strike
TotalPitches TotalPitches +1

 if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore +1
 VisitorPitcherStats VisitorPitcherScor
 else
 HomePitcherScore HomePitcherScore +1
 HomePitcherStats HomePitcherScore

case 'X': // Pitch was a swinging strike
TotalPitches TotalPitches +1

 if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore +1
 VisitorPitcherStats VisitorPitcherScor
 else
 HomePitcherScore HomePitcherScore +1
 HomePitcherStats HomePitcherScore

case 'F': // Pitch was a foul ball
TotalPitches TotalPitches +1

 if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore +1
 VisitorPitcherStats VisitorPitcherScor
 else
 HomePitcherScore HomePitcherScore +1
 HomePitcherStats HomePitcherScore

case 'B': // Pitch was a called a ball
TotalPitches TotalPitches +1

 if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore -1
 VisitorPitcherStats VisitorPitcherScor
 else
 HomePitcherScore HomePitcherScore -1
 HomePitcherStats HomePitcherScore

for j 0, j <= length of PlayLineLength, j j + 1
switch on PlayField[j]

 case 'W': // Play was a 'walk'
 NumWalks NumWalks + 1;
 if AtBat = HOME)
 VisitorPitcherScore VisitorPitcherScore + WALK

VisitorPitcherStats VisitorPitcherScore
 else
 HomePitcherScore HomePitcherScore + WALK;

 HomePitcherStats HomePitcherScore

case 'S':
if PlayField[j+1] = 'B' // It is a ‘stolen base’

 NumStolen NumStolen + 1
 if AtBat = HOME

 VisitorPitcherScore VisitorPitcherScore +

 STOLENBASE
 VisitorPitcherStats VisitorPitcherScore

 else
 HomePitcherScore HomePitcherScore +
 STOLENBASE;
HomePitcherStats HomePitcherScore

 else // Must be a hit single
 NumSingles NumSingles +1

if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore + SINGLE;

 VisitorPitcherStats VisitorPitcherScore
 else
 HomePitcherScore HomePitcherScore + SINGLE;

 HomePitcherStats HomePitcherScore

case 'D': // It’s a double
 NumDoubles NumDoubles +1

if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore + DOUBLE;

 VisitorPitcherStats VisitorPitcherScore
 else
 HomePitcherScore HomePitcherScore + DOUBLE;

 HomePitcherStats HomePitcherScore

 case 'T': // Play was a 'triples'
 NumTriples NumTriples +1

if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore + TRIPLE;

 VisitorPitcherStats VisitorPitcherScore
 else
 HomePitcherScore HomePitcherScore + TRIPLE;

 HomePitcherStats HomePitcherScore

 case '-': // Play was a 'strike out'
 if PlayField[j+1] = 'H' // Somebody went home;
 NumRuns++;

 case 'K': // Play was a 'strike out'

NumKs NumKs + 1;
 if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore + STRIKEOUT

 VisitorPitcherStats VisitorPitcherScore
 else
 HomePitcherScore HomePitcherScore + STRIKEOUT;

 HomePitcherStats HomePitcherScore

case 'H':
 if PlayField[j+1] = 'R' // It is a Home Run

 NumHomers NumHomers + 1
 if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore + HOMER;

 VisitorPitcherStats VisitorPitcherScore
 else
 HomePitcherScore HomePitcherScore + HOMER;

 HomePitcherStats HomePitcherScore
 if PlayField[j+1] = 'P' // It's a hit batsmen
 NumHitBatsmen NumHitBatsmen +1

if AtBat = HOME
 VisitorPitcherScore VisitorPitcherScore
 + HITBATSMEN;

 VisitorPitcherStats VisitorPitcherScore
 else
 HomePitcherScore HomePitcherScore
 + HITBATSMEN;

 HomePitcherStats HomePitcherScore
Write HomePitcherStats to output file
Write VisitorPitcherStats to output file

CALCULATING THE METRICS
Every pitcher starts with a score of ‘0’. The results of each
pitch are then added to the pitcher’s running score. After
every pitch the pitcher’s score is then written to a string
and a comma is appended to the string. Either at the end of
a game or when a substitute pitcher is brought into a game
the string of the pitcher’s running score is written to an
output ASCII file.

Table 1. Default values of metrics
Event: Value added to pitcher’s

score
Ball -1
Strike +1
Walk -1
Single -1
Double -2
Triple -3
Home Run -4
Stolen Base -1
Ball Put In Play +1
Foul Ball +1
The above table shows the default values for the metrics
used to evaluate a pitcher’s performance. These values can
easily be adjusted and modified if further experiments sug-
gest different optimal values for the metrics.
A sample pitcher’s running score follows:
PHI199204070,mulht001,1,2,3,2,3,1,2,3,2,3,2,1,0,-1,-
2,-1,-2,-3,-4,-5,-6,-7,-6,-8,-9,-10,-11,-10,-11,-12,-13,-
14,-13,-12,-13,-12,-13,-14,-13,-12,-11,-10,-12,-13,-
12,-11,-12,-11,-10,-9,-10,-9,-8,-7,-6,-7,-6,-10,-12,-13,-
12,-11,-12,-13,-12,-13,-15,-14,-13,-15,-16,-15,-16,-
18,-17,-18,-20,-21,-22,-21,-22,-21,-20,-22,-23,-22,-
21,-22,-24,-23,-22,-21,-20,-19,-20,-19,-18,-17,-18

The above example represents the pitching performance of
the pitcher with the ID “mulht001” (who is a player named
Terry Mulholland, for the Philadelphia Phillies) in a game
played on April 7, 1992. Starting with an initial value of 0
the results of every pitch are added to the running score and
appended with a comma to the string. In this example Mr.
Mulholland was removed in the seventh inning and re-
placed by a substitute pitcher. At the time Mr. Mulholland
left the game his score was -18.

EXAMPLES OF ANALYZING A
PITCHER’S PERFORMANCE
After the strings of the pitchers’ running scores have been
output to an ASCII file they can easily be imported into
Microsoft Excel™ for graphing. Examples follow:

Terry Mullholland - 4/7/1992

-30

-25

-20

-15

-10

-5

0

5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Running Pitch Score

Figure 1. The running pitch score for Terry Mulholland on April
7, 1992. Mr. Mulholland was removed from the game in the sev-
enth inning after having given up four earned runs.

Greg Maddux - April 25, 1992

-5

0

5

10

15

20

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109

Running Pitch Score

Figure 2. The running pitch score for Greg Maddux on April 25,
1992. Mr. Maddux was the 1992 winner of the National League
Cy Young Award which is given to the best pitcher in the league.

Jeff Robinson - May 4, 1992

-14

-12

-10

-8

-6

-4

-2

0

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Running Pitch Score

Figure 3. The running pitch score for substitute pitcher Jeff Rob-
inson on May 4, 1992. Mr. Robinson pitched one inning, gave up
2 hits and one earned run (a very poor performance). The official
scorer’s comments embedded in the EVN file are: com,"32 year
old mop up man finds new home. What a team. And the pitching!
My god, its Jeff Robinson!"

Dennis Rasmussen - June 27, 1992

-30

-25

-20

-15

-10

-5

0

5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Running Pitch Score

Figure 4. . The running pitch score for pitcher Dennis Rasmussen
on June 27, 1992. In four innings Mr. Rasmussen gave up 4 hits, 3
earned runs, walked 2 and struck out none.

From the above examples we are optimistic that we can
begin work on developing the desired function that will
predict when a pitcher should be removed from a baseball
game. For example, in Figure 4, above, Mr. Rasmussen,
while not having a great start, held his own until approxi-
mately pitch number 41 when he had a disastrous 4th inning
that resulted in his removal from the game. If Mr. Rasmus-
sen had been pulled from the game before the fourth inning
the results of the game would probably have been quite
different.

FUTURE WORK
We have just begun work on data-mining the wealth of
baseball statistics publicly available. We hope to develop a
function that will predict when a pitcher should be removed
from a baseball game before he falters (as in the case of the
unfortunate Mr. Robinson on June 27, 1992). We also in-
tend to convert the EVN files into a relational database
which will facilitate numerous queries including some
posed to us by the eminent baseball statistician Bill James.

Mr. James is interested in asking such questions as, “What
percentage of all players who score runs reach base on
walks? What percentage on singles? On doubles? On
triples? On hit batsmen? How has that changed over time?
What was the (walk) percentage in 1950? What was it in
1970? What is it now? How is that percentage different on
good teams and bad teams? How does it differ between
pitchers? Of the 2,178 runners who scored off of Nolan
Ryan, how many reached base on a walk? How many
stole a base before they scored? How many scored on
singles, on home runs, on bases-loaded walks, on Wild
Pitches? There are a billion questions to ask, and it is likely
that the answers could improve our understanding of the
game somewhat, possibly enough to impact on-field deci-
sions. . ."[From a private email from Bill James].

Figure 5. Schematic diagram of a proposed relational database
extracted from multiple EVN files. Note: because each EVN file
contains all games played by “Team A” the complete yearly set of
EVN files will also include in the EVN file of “Team B” the
games that it played with “Team A”. Consequently, each game
will appear twice in a complete yearly set of EVN files. There-
fore, a separate index of Game IDs must be kept to ensure that
duplicate games are not entered into the new Intermediate File of
the Relational Database.

ACKNOWLEDGMENTS
We would like to acknowledge and thank the Retrosheet
Organization who maintains the EVN file database and
makes it publicly available on the Internet. We would also
like to thank Mr. Bill James for his encouragement ad ad-
vice. We would also like to thank Dr. Hwanjo Yu of the
University of Iowa his encouragement and advice.

REFERENCES
[1] Baseball Reference

<http://www.baseball-reference.com/>
[2] The Baseball Archive

<http://sports.espn.go.com/mlb/statistics>
[3] Baseball Stats <http://www.baseball-

almanac.com/bstatmen.shtml>
[4] The Baseball Archives <http://www.baseball1.com/>
[5] James, B., “1982 Bill James Baseball Abstract.” Bal-

lantine. Note: Bill James has written a similar book of
baseball statistics every year since 1982.

[6] James, B., “The Bill James Player Rating Book
1995.”Fireside.

[7] Play-by-Play Data Files (Event Files) from 1965-1992.
Retrosheet Organization
<http://www.retrosheet.org/game.htm >

