
 
 
 
 
 
 
 
 
 
 

An Analysis of Dimdal’s1  
“An Optimal Pathfinder for Vehicles 

in Real-World Terrain Maps” 
 
 

Submitted in partial fulfillment of the requirements for the  
Qualifying Exam for Ph.D. students  

in Computer Science at the University of Iowa  
by D. Ezra Sidran. 

 
Spring 2005 

 
  

                                                 
1F. Markus Jönsson has changed his last name to Dimdal and has requested that he be referenced as such in 
the title of this paper. Dimdal wrote to me: [I]… “changed to a new family name 5 months just before my 
first child was born - I wanted us to have a name that is shared by no one else here in Sweden, my old 
family name Jönsson is *very* common here).” Dimdal means "Misty valley" in Swedish. However, to 
avoid confusion, I am leaving the citation as Jönsson. 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 2 of 24 

 0. Introduction 
 
“When game developers look at AI research, they find little work on the 
problems that interest them, such as nontrivial pathfinding…” 
   - John Laird (University of Michigan) [1] 
 
“The most buggy aspect of the game [is] enemy pathfinding…” 
   - Review of  Star Wars: Knights of the Old Republic, PC [2] 
 
“Various algorithms have been proposed for the determination of the 
optimum paths in line networks. Moving in space is a far more complex 
problem, where research has been scarce.” 

- Stefanakis & Kavouras [3] 
 
 
For the purpose of this paper ‘pathfinding’ is defined as the various 
methods and techniques used to calculate an optimal path from one point 
to another across a real-world or realistic three dimensional terrain. The 
need for efficient pathfinding algorithms is well documented — the above 
quotes are only a minor sampling - and the quest for a “black box” 
universal pathfinding algorithm is ongoing. 
 
There is also an extraordinary lack of published academic research on the 
subject. A search of the ACM Digital Library returned only two papers on 
the topic. [4] [5] 
 
In the almost fifty years since research on pathfinding has begun, numerous 
methods have been employed to determine the shortest or fastest path. 
While this paper is only concerned with the weighted graph method 
proposed by Dijkstra [6] in 1959 and its direct descendents (including the 
A* algorithm) [7] various other interesting techniques have been suggested 
including Line Intersection, Lonningdal’s “crash-and-turn” algorithm and 
Burgess’ “Gas diffusion as a method of analyzing avenues of approach 
through digital terrain.”[8] However, analysis by Jönsson [9], and many 
others, concludes that the weighted graph method is the most efficient 
method; especially considering that digital terrain and elevation maps easily 
lend themselves to this method of discretization. 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 3 of 24 

 
 

1. The Problem Defined 
 
Jönsson’s optimal pathing algorithm is designed to work with multiple 
terrain types and three-dimensional elevation data stored in an M x N 
matrix. While it is possible to modify this algorithm to work with hexagonal 
planar meshes, this paper will assume that the terrain and elevation has 
been discretized into a regular quadratic planar mesh (a grid). 
 

 
 
The purpose of the pathfinding algorithm is to determine, first, if it is 
possible to find a path from the start point to the goal (maps may contain 
impassable barriers such as rivers, swamps or elevations that have been 
defined as too steep to cross), and, if so, to determine the optimal path. 
There are many factors that are evaluated to determine the optimal path 
(defined as the path with the least weight) including the speed in which a 
path will be traversed and if the path can be observed by enemy units. 
These factors are discussed below. 
 
In addition to the correctness of the pathfinding algorithm, the speed at 
which it executes is of paramount importance. Indeed, since one of the 
most common applications of pathing algorithms is in the commercial 
computer game industry — and because only a small fraction of the 
computer’s clock cycles can be budgeted to pathing — an algorithm that 

Figure 1.  Section of sample map 
showing elevation contours (from 
author’s “AI Test Bed” program). 

Figure 2. .  Section of same map 
showing elevation, now digitized and 
displayed in color. (from author’s “AI 
Test Bed” program). 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 4 of 24 

quickly returns a valid path is valued more highly than an algorithm that 
returns an optimal path but exceeds its allotment of clock cycles. 
 
 Lastly, we desire a most general pathfinding algorithm that works optimally 
with few assumptions (or no assumptions) about the terrain, elevation, 

roads and enemy units. In Table 1 (above) we see that if we possess some a 
priori information major optimizations can be realized. The commercial 
game industry often employs the strategy of pre-calculating waypoints, 
bottlenecks and bridge-crossings to optimize their pathfinding routines. 
However, we are concerned with pathfinding algorithms that function 
optimally even without any a priori information.  

                                                 
2 Best-First-Searches run fast but are extremely vulnerable to ‘traps’ of impassible terrain as shown in this 
illustration from Amit’s A* Page [10] 

 

Table 1: Effects of a priori information on pathfinding optimization. 
A priori information: Optimization: Note: 

No impassable terrain Use Best-First-Search 
(BFS).2 

BFS is very fast but 
handles obstacles badly 
and is not guaranteed to 
find the shortest path if 
detours need to be made. 

Roads Utilization of road net. 
Concentrate pathfinding on 
reaching nearest road, 
following road to nearest 
exit point to goal. 

Traveling along a road net 
will usually result in the 
fastest path. 

Map previewed; we are not 
dealing with a previously 
“unknown” map. Location 
of bridges or bottlenecks. 

We can use preprocessing 
methods to determine 
waypoints, choke-points, 
bridges, etc. 

This is a common 
optimization done in 
commercial games. 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 5 of 24 

 

2. Summary of What Jönsson’s Optimal Pathfinding Does 
 
F. Markus Jönsson’s master’s thesis, “An Optimal Pathfinder for Vehicles in 
Real-World Digital Terrain Maps” [9] introduces an algorithm that given a 
map (represented by terrain and elevation matrices and roads as an array of 
vectors) and locations of enemy units will plot the fastest, least observable, 
route from a starting position to a goal position. 
 
Jönsson’s has developed a sophisticated h(n) heuristic estimate cost 
function that accounts for more variables than the traditional A* cost 
function (described below) and includes modifications for terrain, elevation, 
roads and enemy line of sight.  
 
Algorithm Overview: 
Input:  
• An N x M matrix representing the elevation of a map in a digital format 

(usually meters above sea level). 
• An N x M matrix representing the terrain of a map in a digital format 

(usually in sixteen values; see Figure 3, below) with an associated table of 
‘costs’ for each terrain. 

• An array of polygon chains representing roads vectors. 
• An array of units and locations (in XY coordinate pairs) that represent 

enemy units on the map. 
• A starting location (XY coordinate pair). 
• A goal location (XY coordinate pair). 
 
Output: 
• A path (an array of contiguous XY coordinate pairs) from the starting 

location to the goal location. This path will be the path with the lowest 
weight as determined by slope, terrain and enemy visibility. 

• The algorithm returns ‘0’ if a path from the starting location to the goal 
location cannot be found. 

 
 
 
 
 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 6 of 24 

 

3. A Brief Overview of Related Work 
 

E. W. Dijkstra’s 1959 paper A Note on Two Problems in Connexion with Graphs 
[6] inevitably appears as a reference in pathfinding papers. Of the two 
problems presented by Dijkstra, it is the second one, “Find the path of 
minimum total length between two given nodes P and Q,” that interests us, 
and that is the basis of all weighted graph pathfinding algorithms. 
 
The good news about Dijkstra’s Algorithm is that it is thorough; if there is a 
path from the start to the goal it will return the path with the smallest 
values. The bad news is that it is a naive algorithm and runs in O((V + E) log 
V) which is O(E log V) if all vertices are reachable from the source. [11]  
 
The A* algorithm was first presented in 1968 in a paper entitled, “A Formal 
Basis for the Heuristic Determination of Minimum Cost Paths,” Hart, 
Nilsson and Raphael. [7].  
 
Like Dijkstra, Hart, Nilsson and Raphael, thought of their algorithms 
directed towards sparse weighted graph problems, “of the sort of 
problem… of cities with roads connecting certain pairs of them.” [7]. It 
would be a number of years later before this algorithm would be applied to 
real-world maps stored as terrain and elevation matrices. 
 

The A* algorithm is a direct descendent of Dijkstra’s Algorithm.  Like 
Dijkstra’s,  A* also maintains two lists; traditionally called “open” which is 
usually implemented as a priority queue and “closed” (the list of nodes that 
have been examined).   
 
However, A* introduces an important new concept, the cost function, and 
the equation associated with it: “the cost f(n) of an optimal path through 
node n is estimated by an appropriate evaluation function f(n). We can 
write f(n) as the sum of two parts: f(n) = g(n) + h(n) where g(n) is the 
actual cost of an optimal path from s to n, and h(n) is the actual cost of an 
optimal path from n to a preferred goal node of n.[7] This cost function is 
described in much greater detail in section 5, below. 
 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 7 of 24 

Stefanakis and Kavouras, in their 1995 paper, “On the Determination of the 
Optimum Path in Space” [3] present a “new approach to the optimum path 
finding problem which they summarize in five steps:  

1. Determination of a finite number of spots in space. 
2. Establishment of a network connecting these spots. 
3. Formation of the travel cost model. 
4. Assignment of accumulated travel cost values to these spots from the 

point of reference (i.e. the departure or destination spot). 
5. Determination of the optimum path(s). 

 
As we shall see, Jönsson will use this approach as the basis for his optimal 
path algorithm.  
 
 
 
 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 8 of 24 

A cell and its eight 
neighbors from Jönsson [9]. 

 

4. Problem Reduction  
 
Jönsson’s approach is to, “discretize the problem into essentially a weighted 
graph search problem.” The first step is to restrict “(discretizing) the 
infinite number of locations of the continuous space into a finite number of 
points.” [9] This is accomplished by converting 
(discretizing or digitizing, if you prefer) an 
‘analog’ map into a digital “regular quadratic 
planar mesh” of the sort used by the U. S. 
Geological Survey (DEM format) or the military 
(DTED format). Jönsson then restricts 
movement to the edges between the vertices 
(the term ‘cell’ is used interchangeably with 
‘vertex’) along the directed edges. The cells 
that are destinations of all the edges of a given 
cell are called its ‘neighbors’ (see illustration 
right). By this method Jönsson has converted a map into a directed graph. 
 
Dijkstra’s Algorithm and the A* Algorithm were created to find the 
shortest path in weighted sparse directional graphs.  
 

 
 
By the 1980’s these algorithms were employed in the computer game 
industry and elsewhere to find paths not in sparse graphs but dense graphs 
represented by N x M matrices that corresponded to real-world type 
terrain. Generally the edge weights of Dijkstra’s and the A* algorithms 

f(v) = g(v) + h(v) 

F is used to 
evaluate 
each vertex 
on the path. 

G is the 
Movement Cost 
from the 
Starting Point 
to the vertex. 

H is a ‘heuristic’ 
estimate of the 
movement cost from 
the vertex to the 
Goal. 

The Vertex Evaluation Function of the A* Algorithm. 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 9 of 24 

Figure 3. A Terrain effects on 
mobility chart from Dupuy[13]. 
Note: this chart uses a 
percentage of theoretical 
‘maximum movement’ rather 
than a penalty cost. 

were assumed to simply be the distance between vertices3. Jönsson 
introduces refinements including calculations for terrain and elevation 
effects on vertex weight.  
 
4.1 Developing a function that accounts for terrain. 
Terrain penalties, or the ‘cost’ of ‘entering a node’ from an adjacent node 
have been used in board wargames since at least the eighteenth century 
[12].  
 
A typical wargame terrain effects chart appears 
at right. [13] It is interesting to note that 
traditionally these board wargame terrain effect 
charts employ a percentage with “rolling flat 
terrain” = 100% of maximum movement and 
other terrain types being a percentage of this 
effect. 
 
For example, in the chart at the right, if a unit 
travels at 10 miles per hour on “rolling flat 
terrain” it will travel at 50% or 5 miles per hour 
on “Rugged Mixed”.  
 
Because the A* algorithm selects the path with 
the lowest f we need to employ a terrain effect 
that adds a penalty. Consequently, we may set 
the cost of entering a “rolling flat terrain” node 
at ‘1’ and the cost of entering a “Rugged Mixed” 
node at 2. 
 
Another interesting observation is that the 
number of terrain types is frequently below 16. 
This allows for the terrain value for a node to 
be economically stored. 
 
 

                                                 
3 Because our directed graph is a matrix there are, in fact, only two distances between nodes: either a 
diagonal or an axial edge. These values are pre-calculated and used in the Cost Function. 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 10 of 24 

 
 
 
Slopes. 
Another common variable used in real-world terrain calculations is the 
difference in elevation (slope) between two cells. Jönsson employs a simple 
calculation to determine if the slope of the vertex between cells is too 
great (i.e. greater than the value dwMaxHeightDiff) to be traversed and, if so, 
returns the constant infinity which removes the vertex from the set of 
vertices to be considered for an optimal path. This method is acceptable 
because Jönsson’s algorithm was designed to work with vehicles. However, 
if Jönsson’s algorithm was to be extended to calculate optimal paths for 

 
EdAxisMod = 1.0 

 
 

EdDiagMod = 
1.41421356 

 

Rolling Terrain  = 1.0 

Swamp   = 3.5. 

Water   =  ∞ 

1.41 1.0 1.41 

1.0 

1.41 3.5 

3.5 

∞ 

Terrain 
Costs * Edge 

Length 

Example of the terrain modifiers in the h(n) calculation: 
Sample map is ‘discretized’ into grid (upper left). 3 x 3 grid blown up 
(upper right). Pre-calculated edge lengths (lower left). Terrain costs (lower 
center). Results of Cost Function calculations for grid (lower right). 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 11 of 24 

Road ‘rasterization’ from 
Jönsson [9]. 

1 2 3 4 

1 
2 

3 
4 3 
4 
5 
6 
7 
8 

Example of bilinear interpolation 
surface on a 4x4 vertex grid from 
Jönsson [4]. 

foot-soldiers the slope of the vertex should be calculated and added as a 
modifier (such as the terrain modifier) to the weight function. 
 
Obstacles. 
Jönsson defines an obstacle as an impassable area and simple sets the 
movement cost for such areas to infinity. 
 
Roads. 
Jönsson’s Optimal Pathfinder accepts as input a 
representation of roads stored as an array of vector 
data. This is similar to a method employed by the 
author in his “UMS II: Nations at War” commercial 
computer game published in 1997. Jönsson 
‘reconstitutes’ the road vectors using the 
Bresenham Algorithm and then ‘rasterizes’ the 
vector data (right). This data is then stored as a cell 
attribute and it is used in the calculations for the cost function. 
 
 
Enemy line-of-sight. 
An important application of optimal pathfinding routines is in military 
simulations. Consequently, it is very desirable to include the 
implementation of a three dimensional line-of-sight algorithm that 
determines what areas are visible to enemy units and apply this information 
to the optimal pathfinder routine. 
 
Jönsson does not employ a 3D Bresenham algorithm because of the 
potential of “overt aliasing” and the potential for inaccuracy that this could 
introduce. Consequently, Jönsson uses a fixed point Digital Difference 
Algorithm (DDA) which is more accurate 
because it uses floating point numbers and 
sub-pixel steps. However, as Jönsson 
points out, “This calculation can be one of 
the heaviest computational burdens in… 
[the optimal pathfinding]… algorithm. 
Therefore, we don’t want to do this if it 
isn’t absolutely necessary.” Jönsson leaves 
a byte in each cell structure to indicate if 
the visibility for the cell has been 
previously calculated and, if so, if the cell 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 12 of 24 

is currently visible from known enemy positions.  
 
4.2 Putting it all together: computing edge cost. 
The cost for traversing each edge between two cells is not stored but 
rather calculated once as needed. Jönsson defines infinity as half the 
maximum value of the data type “so that it can safely be added to any cost 
value without any risk of overflow.” [9] Infinity is used to mark inaccessible 
cells and the edges of the map. 
 
The algorithm for computing the cost function between two adjacent cells 
is: 
 

1. Check to see if the edge does not return infinity. If the edge returns 
infinity this edge cannot be traversed, return infinity, else go to step 2. 

2. Check to see if both the source and destination cells contain identical 
road values. There are four possible road values: no road, light road, 
medium road, and large road. If either cell contains the ‘no road’ 
value go to step 3. If both cells contain the same road value it is 
assumed that the two cells are connected by the same road; return 
the cost for that road value, else go to step 3. 

3. Calculate the slope of the edge between the two cells. If the slope is 
greater than a predefined maximum slope value return infinity. (Note: 
Using the slope as a modifier for speed and/or cost might make an 
interesting addition to this algorithm.) Else go to step 4. 

4. Calculate the basic terrain cost (see illustration below).  
5. Calculate if the destination cell is visible to known enemy locations. 
6. Return cost. 

 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 13 of 24 

 
The terrain costs are implemented via a pre-calculated look-up table. This 
also adds the correct weight for distance (remember there are two 
different values for distance depending on the direction; see illustration 
next page). 
 
Looking back at the vertex evaluation function, f(v) = g(v) + h(v) on page 8, 
the edge cost comes in to play in computing g(v) as follows: 
 

 
 
The following section details the h(v) part of the f(v) function and how the 
A* search proceeds.  

 g(v) = g(u) + w(u,v) 

G is the 
Movement Cost 
from the 
Starting Point 
to u. 

W is the cost of 
traveling from vertex 
u to vertex v (as 
calculated in the 
above equation). 

Jönsson’s addition to the g(v) function. 

w(u,v) = e(u,v) + r(u,v) + s(u,v) + t(u,v) + v(u,v) 

Jönsson’s edge cost (or weight) function. 

Edge check 
function. Returns 
∞ if there is not 
an edge 
between nodes. 

Road check 
function. 
Returns road 
cost between 
nodes.  

Slope function. 
Returns ∞ if 
slope is 
greater than 
MaxHeightDiff 

Terrain 
function. 
See 
below for 
details. 

Enemy 
line-of-
sight 
visibility 
function. 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 14 of 24 

 

5. Searching for the Optimal Path 
 
The key to the A* algorithm is the Heuristic Function: h(v). 
 
Jönsson writes, “Generally the ‘distance from u to v’ times ‘smallest terrain 
cost’ is the best estimate we can do for h[v] when an underestimate must 
be guaranteed. What is the optimal ‘distance’ estimate depends on the 
graph structure. The true Euclidean distance should serve, but it would 
often be lower than the actual edge lengths along the shortest path… 
Instead, since the graph structure is uniform we can actually calculate the 
exact, ‘optimal’ distance. If we’d only had orthogonal edges, it would be the 
so-called ‘Manhattan’ distance: |∆x| + |∆y|. In our case, with diagonal edges 
as well, it is easily seen to be ‘diagonal edge length’ * min (|∆x| , |∆y|) + 
‘axial edge length’ * |∆x| - |∆y|. An addition[al] bonus compared to using the 
Euclidean distance is that no costly square root calculation is required.”[9] 

 

 
 

Jönsson uses the Minimum Terrain Cost (i.e. the smallest of all possible 
terrain costs) as the multiplier because it is essential that h(v) return an 
underestimate to guarantee that a path will be found. Other ideas, such as 
an average terrain cost, cannot guarantee that h(v) will return an 
underestimate. 
 
5.1 Other issues. 
Jönsson does not search the entire graph for an optimal path but, rather, 
restricts the search area to a smaller region within the entire graph. 

h(v)= ((Diagonal Edge Length * min(dx , dy)) +  
 (Axial Edge Length * |dx – dy|)) 
 * Minimum Terrain Cost 

Jönsson’s implementation of the A* heuristic. 

where dx = |SourceX – DestinationX| and dy = |SourceY – DestinationY| 
 
 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 15 of 24 

Jönsson writes, “How can the minimum size of this region be determined 
without a priori knowledge of the actual optimal path? …Thus, it is 
necessary to resort to using some kind of heuristic to determine a good 
region size.” The heuristic that Jönsson uses employs an estimate of the 
largest obstacle (i.e. impassable terrain) and the distance between the 
source and the destination. 
 
“Practical tests have shown that at small scales… [the largest obstacle 
estimate]… is much more important while at larger scales… [the distance 
between the source and the destination]… is dominant.” Consequently, 
Jönsson arrives at the following “compromise heuristic”: 
 

 
 
Lastly, there is the issue of ‘ties’4 — paths that share the lowest ‘f’ score — in 
the A* algorithm. In Nilsson’s algorithm “Ties among minimal f values are 
resolved in favor of the deepest node in the search tree.” Obviously, this 
requires each of the paths to be searched to the very end to determine 
which path possesses the deepest node; and this takes more time. 
Consequently, A* is frequently implemented with various ‘tie-breaking’ 
heuristics. 

 
These tie-breaking heuristics include: 

                                                 
4 Jönsson does not describe the heuristic he uses for tie-breaking. I sent him an email asking what method 
of ‘tie-breaking he used and he replied, “To be honest, I don't remember any more...” It may be surmised 
that Jönsson does not employ the “give preference to paths that are along straight lines” method (above) 
because he later employs a “path smoothing” algorithm which, presumably, would not be necessary if he 
implemented this method. 

b = a + (1 + c) * d 

B is the length of 
the diagonal of 
the bounding 
rectangle. 

D is the distance 
between source 
and destination. 

C is a scaling 
constant “(1/3 
seems to work 
well.” 

A is size 
of the 
largest 
obstacle. 

Jönsson’s Algorithm for Restricting the Search Region. 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 16 of 24 

• Chose the node that is closest to the goal. This can be 
accomplished by adding a small value (perhaps as small as 0.1% 
though, in theory, the incremental value should be based on the 
number of steps of the optimal path) to the f value for every step 
along the path. This will have the effect of making the path with the 
most steps having that much of a greater f value. Patel [10] 

• Give preference to paths that are along straight lines. A 
different way to break ties is to prefer paths that are along the 
straight line from the starting point to the goal: 

This code computes the vector cross-product between the start to 
goal vector and the current point to goal vector. When these 
vectors don't line up, the cross product will be larger. The result is 
that this code will give some slight preference to a path that lies 
along the straight line path from the start to the goal. When there 
are no obstacles, A* not only explores less of the map, the path 
looks very nice as well. [10]. 

 
 
Efficient representation of a graph. 
Jönsson employs some very impressive optimization techniques to minimize 
the memory requirements for storing the graph. Rather than using 4 bytes 
to explicitly store the edge cost plus two bytes to store an index to the 
destination cell (times 8 for the eight edges from a cell to its neighbors) 
Jönsson uses only 3 bytes to store the values for each cell (see footnote 21, 
above) and, instead uses a two dimensional index (CellRef) into the array of 
cells. Then, by numbering, “the edge directions clockwise from 0 to 7 (0 
being North, 1 Northeast, 2 East, 3 Southeast, etc.)… it is easy to calculate 
the index change and store it in an look-up table, crWalkEdgeDelta[8]. To 
walk an edge, with direction ed, all we then have to do is ‘add’ 
crWalkEdgeDelta[ed] to the source cell's CellRef.”[9] 
 
 
The Priority Que (using a Fibonacci Heap). 
Dijkstra’s Algorithm and the A* algorithm both employ a list (frequently 
called ‘Open’) which is usually implemented as a priority queue. Jönsson has 
recognized that a Fibonacci Heap is considerably faster than the common 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 17 of 24 

 
 
 
 
 

The result of a typical 
search. Jönsson.[9] 

“binary heap” when employed for pathfinding across large real-world 
terrain (dense) graphs. [14] Binary heaps are faster for small heaps. 
 
The key to the efficiency of a Fibonacci Heap when employed in dense 
graph pathfinding is that its ‘costly’ functions such as ‘housekeeping’ are 
amortized; therefore the bigger the heap the lower the cost of the 
occasional (but expensive time-wise) ‘housekeeping’ operations. [9]. 
 
N.B. Employing a Fibonacci Heap may not be practical when implementing 
Jönsson’s Optimal Pathfinder in a commercial Real Time Strategy (RTS) 
computer game because the ‘housekeeping’ may cause the game to pause 
for an unacceptable length of time. Traditionally, RTS games allot a small 
fraction of the clock cycles for AI and pathfinding. Consequently, 
implementing a Fibonacci Heap should be reserved for games that use 
‘phases’ or other non time-slice applications. 
 
Reconstructing the Path. 
After the goal has been reached, “we can easily use it for backtracking the 
optimum path from the destination vertex. We start in the destination cell 
and then walk in the opposite direction to the edge 
direction stored in the current cell until we reach the 
source cell. It is then a simple thing to reverse the 
sequence of the cells visited during the backtracking 
to produce a 'forward' path from source to 
destination. The result of a typical search is 
illustrated (above). The circle is the path's 
destination. Gray cells never needed to be visited during the algorithm 
execution. Dark gray is an obstacle. The arrows show the edges of 
'currently best known' paths to all examined cells, i.e. the ed[v] values for 
the vertices at the arrow heads. For the retired cells (not marked) this is 
also the optimum path to those cells. The thicker dark arrows show the 
least cost path to the destination.” 
 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 18 of 24 

 

16 vertices are 
subsampled into one 
from Jönsson [9]. 

 
Progressive approximation. 
Jönsson’s final optimization is progressive 
approximation: the method of ‘subsampling’ a graph 
by ‘clumping’ 4x4 vertices into one.  This method is 
employed when it is possible to exceed physical 
memory. There are, however, some issues that need 
to be resolved when employing subsampling: 

• Elevation. This is the easiest issue. Jönsson used 
the mean value of the elevation from the 16 
cells. 

• Terrain. Jönsson chose to “select the most 
‘populous’ terrain type,” and if there was, “ambiguity the ‘least 
costly’.”  

• Roads. The ‘fastest’ road is selected if more than one road type 
appears in a 4 x 4 subsampling. Then, “the coarse solution (found on 
the subsampled graph) is divided into ‘segments’… Then the 
optimum path between the first segment’s end points… is found 
using the A* algorithm on the original, ‘fine’ graph. This is repeated 
for the other segments and all the ‘fine’ segment solutions [are] 
finally pasted together into a complete solution.” [9] 

 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 19 of 24 

 

Example from Jönsson which shows a path where the distance between 
source and destination is approximately 64km (the cell size is 25m). “The 
complete search graph contained approximately 8.5 million vertices. No 
enemies were present. Using the normal algorithm, it took 48s to compute 
on a standard Pentium 133 with 18Mb of free memory… Most of the time 
was taken up by the virtual memory management thrashing the hard disk. 
As a comparison, computing a ‘coarse’ solution on a factor 6 [i. e. a 6 x 6 
vertex clumping] subsampled graph took only 2.5s!” [9] 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 20 of 24 

6. Examples and Discussion 
 
Examples of Jönsson’s Optimal Pathfinding Algorithm: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Obstacles in the form of lakes and ‘bad’ terrain are correctly 
circumnavigated. Above, the dark green is forest (very low speed traversal) 
and dark purple is water. 
 

In the above example avoidance of enemy detection has forced the 
algorithm to take a southern route rather than the more direct route 
which crosses enemy observed locations (black dots). 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 21 of 24 

Roads have a very low ‘cost’ in this example. Consequently the optimal 
path is not the most direct. 

 
 
 
 
 
 
 
 
 
 
 
 

 
The above two images are examples of Jönsson’s Algorithm for Restricting 
the Search Area. The image on the left shows the results of a search 
rectangle that is too small and, consequently, does not return a solution. In 
the image in the right the search area has been expanded and a solution has 
been found. Note: Jönsson’s Optimal Path Algorithm does not automatically 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 22 of 24 

expand the search area when a path solution is not found though it would 
be easy to add this feature. 
 
 
Future work. 
Jönsson acknowledges that the greatest shortcoming of the algorithm is its 
inability to deal with dynamic, i.e. moving enemy units, scenarios. He 
suggests that a variant of the progressive approximation method could be 
used to calculate ‘course’ solutions. 
 
Another possibility, Jönsson suggests, is to “keep track of a time parameter 
along with the ‘currently best path’ parameter for every node during the A* 
search. This parameter could then be used together with the spatial 
position as an input to the enemy and other modifier.”  
 
 
Comments. 
Jönsson’s contribution to the field of optimal real-world terrain pathfinding 
algorithms is in combining numerous optimizations (some, such as his 
efficient graph representation are original, while others such as using a 
Fibonacci Heap instead of a Binary Heap are not) and publishing his results. 
 
As noted previously, most work on optimal real-world pathfinding is done 
in the commercial computer game industry and, consequently, is not 
published. Jönsson’s paper is certainly the best “all round” work covering 
this important subject that has been published in an academic setting and, 
for this reason alone, is significant. 
 
One possible optimization for maps that are known to contain roads would 
be to first search paths from the start to the nearest road and from the 
nearest road to the goal. 
 
Also, adding at least an ‘approximation of terrain costs’ to the h(v) function 
would be beneficial. 
 
 
 
 
 
 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 23 of 24 

REFERENCES 
[1] Lard, John. Bridging the Gap Between Developers & Researchers. November 8, 
2000. http://www.gamasutra.com/features/20001108/laird_03.htm. 
 
[2] Review of  Star Wars: Knights of the Old Republic, PC. 
http://www.gamersinfo.net/index.php?art/id:27 
 
[3] Stefanakis, E. and Kavouras, M. On the Determination of the Optimum Path in Space. 
(1995). Proceedings of the European Conference on Spatial Information Theory COSIT 
95. 

[4] Fu, Jensen, Houlette . Human systems modeling: specifying the behavior of 
computer-generated forces without programming. (2003) 

[5] Koenig. A Comparison of Fast Search Methods for Real-Time Situated Agents. 
(2004). 

[6] Dijkstra, E. W., A Note on Two Problems in Connexion with Graphs. Numerische 
Mathematik 1, 269-271 (1959). Note: The title of this paper is frequently 
“Americanized”; however, I give the title as it appears on the copy of the paper that I 
have. 
 
[7] Hart, P. E., Nilsson, N.J., Raphael, B., A Formal Basis for the Heuristic 
Determination of Minimum Cost Paths. IEEE Transactions of Systems Science and 
Cybernetics, Vol. SSC-4, No. 2, 100-107 (1968). 
 
[8] Burgess, R. G., “Realistic Evaluation of Terrain by Intelligent Natural Agents 
(RETINA),” Master’s Thesis, Naval Post Graduate School, Monterey, CA (2003). 
 
[9] Jönsson, M. J., “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps,” 
Master’s Thesis, The Royal Institute of Science, School of Engineering Physics, 
Stockholm, Sweden (2003). N. B. Markus Jönsson has changed his name to Markus 
Dimdal. 
 
 [10] Amit's Thoughts on Path-Finding and A-Star, 
http://theory.stanford.edu/~amitp/GameProgramming/ 
 
[11] Introduction to Algorithms, Second Edition. Cormen, T., Leiserson, C., Rivest, R., 
Stein, C. MIT Press, Cambridge, Massachusetts. 2001. 
 
[12] “A Brief History of Computing & Wargaming”, LeGuerrier, Volume 2, Number 2, 
D. E. Sidran 
 
[13] Numbers, Predictions & War: The Use of History to Evaluate and Predict the 
Outcome of Armed Conflict; Trevor N. Dupuy; Hero Books; Fairfax, Va.; (1985) 



An Analysis of Dimdal’s “An Optimal Pathfinder for Vehicles in Real-World Terrain Maps”• Sidran • Page 24 of 24 

[14] “Fibonacci Heaps.” Van Houdt, B. 
http://www.win.ua.ac.be/~vanhoudt/graph/fibonacci.pdf 
 

  
 


