
Implementing the Five Canonical Offensive Maneuvers in a
CGF Environment

David Ezra Sidran
University of Iowa

Iowa City, Iowa, USA

Alberto Maria Segre
University of Iowa

Iowa City, Iowa, USA

{dsidran, segre}@cs.uiowa.edu

Keywords:

Offensive Maneuver, Tactics, Groups, Lines, Frontages, Flanks, Schwerpunkt

ABSTRACT: In this paper we describe the algorithms and underlying machinery necessary to implement the five canonical
offensive maneuvers described in U. S. Army Field Manual FM 3-21, Section II, Forms of Maneuver (envelopment, turning
movement, infiltration, penetration, and frontal attack) within a computer generated forces environment. We also include
descriptions of algorithms for calculating groups and flanks for sets of forces which are a necessary precursor to calculating
the five offensive maneuvers.

1. Introduction
It is widely accepted that there is a need for software capa-
ble of making high level command decisions within a CGF
environment [1]. Currently, the task of making command
decisions within such an environment is usually performed
by subject matter experts (SMEs) [2]. Traditionally, the
military decision making process (MDMP) has seven se-
quential steps: mission reception, mission analysis, devel-
opment of the course of action (COA), COA analysis, COA
comparison, COA approval, and production of orders [3].
A prerequisite for cognitive models that simulate a com-
mander’s decision making process is an understanding of
terrain, units’ formations and doctrinal templates [3]. We
present here a series of algorithms that, together with the
necessary underlying machinery, implement the five ca-
nonical offensive maneuvers described in U. S. Army Field
Manual FM-21 [4]. We suggest that these algorithms will
be useful in both the mission analysis, development of
COA, COA analysis and COA comparison steps of the
MDMP. Furthermore, the utilization of CGF equipped with
these algorithms will result in lower cost, requiring fewer
human participants in synthetic environment military simu-
lations, while allowing the human participants a greater
range of activities [5].
To facilitate our research in this field we have created a
test-bed program: the Tactical Inference Generator
(TIGER). TIGER employs terrain and elevation layers and
allows us to place units of different types within the envi-
ronment and to observe the results of our algorithms.

2. Building Blocks of Offensive Maneuvers
The U. S. Army Field Manual FM 3-21, Section II, Forms
of Maneuver lists five prototype maneuvers: envelopment,
turning movement, infiltration, penetration, and frontal
attack. The algorithms for implementing the five canonical

offensive maneuvers share a common set of building
blocks. These building blocks are Range of Influence
(ROI), grouping and flank detection, computing flanks and
path planning.

2.1. Range of Influence
The concept of a CGF unit’s Range of Influence is an ex-
tension of the hexagonal board wargame Zone of Control
[6] and Influence Mapping [7, 8, 9, 10]. Our implementa-
tion of ROI in TIGER allows for each unit type in a simula-
tion to have a unique value which represents the percentage
of a unit’s strength ‘projected’ a linear distance from the
unit (see Figure 1) to a predefined distance. The ROI for
each unit type is stored as an array that also includes a bi-
nary value for indicating if a unit’s ROI is influenced by an
unblocked Line of Sight (LOS) to the target node or not
[11].
The most obvious implementation of ROI would be a
monotonically decreasing series of numbers indicating that
the unit’s ROI diminishes as the distance from the unit in-
creases (see Red Group 2, Figure 1). However, our system
also allows for representation of other ROIs such as con-
centric circles (possibly representing a unit with mixed
arms, Red Group 1, Figure 1) and a unit with limited offen-
sive power but long range observation abilities (Red Group
0, Figure 1). ROI values are also employed path calcula-
tions.

2.2. Groups and Lines
The process of implementing offensive maneuvers begins
with sorting the opposing forces (OPFOR) into distinct
groups. The earliest known formal description of methods
for calculating groups or lines within a ‘computer
wargame’ environment is Crawford’s description of his
‘Geometric AI’ used in the commercial wargame Patton
versus Rommel circa 1988 [12]. Penner and Steinmetz’s

7/13/2007 - Page 1 of 8

JointAdvisor (2000) employed a method of drawing poly-
gons of different colors representing the probability of ac-
curacy upon a map in response to the query, “Where is the
main defense?” [13]

Grouping is also performed by SORTS, a Real Time Strat-
egy bot created by Wintermute, Xu and Laird [14]. Though
we employ a different grouping algorithm (SORTS uses the
principle of Gestalt grouping and sorts by unit type within
a predefined radius) we are, however, in agreement with
their statement that groups provide a “key abstraction for
tactical reasoning.” [14]

Our grouping is based on an abstract notion of “proximity”
which can be defined in terms of actual distance and/or
other measures. From a procedural perspective we employ
Kruskal’s algorithm to create a minimum spanning tree
(MST) of the OPFOR (see Figure 2). [15] Units are divided
into groups via MST clustering [16]. Clustering can be
performed either by using a minimum threshold between

groups (ComputeGroupsByThreshold) or by specifying the
number of groups desired (ComputeGroupsByNumber).
In the following algorithms U is the set of all units (both
opposition, OPFOR, and friendly, MYFOR). ROI values
are embedded in the ‘world view’ W, which also reflects,
e.g., a unit’s view of the terrain and known opposing
forces.

Algorithm for ComputeGroupsByThreshold Function

// Group OPFOR units from a set U of units according to
// edge weighting or distance function embedded in ‘world
// view’ W. Returns a forest of minimum spanning trees
// corresponding to groups separated at least by distance
// threshold D

ComputeGroupsByThreshold(U, W, D)
{

// Compute MST of OPFOR units in set U
T MST(OPFOR(U))
// Remove edges longer than distance threshold
for e in edges (T)

if (weight(e,W) > D)
 T delete (e,T)

Figure 1. Examples of Range of Influence projected on a grid
without terrain or elevation (TIGER screen shot).

// Return forest of MSTs
return(T)

}

The threshold value can be a user-defined Euclidean dis-
tance which may be, e.g., dependent upon unit visibility as
calculated by a 3D Bresnham line algorithm [17]. Other
values, such as unit ROI, unit type and distance that a unit
can travel over terrain within a preset period of time, can
also be used to establish a threshold value. When employed
as the first step of the MDMP, the returned number of
groups (NumGroups(T)) can be used in the process of de-
ciding the appropriate offensive maneuver to implement
(see 5, Further Research). In contrast, the penetration ma-
neuver requires exactly two OPFOR groups. Calling Com-
puteGroupsByNumber with the desired number of groups
will result in OPFOR being divided accordingly.

Algorithm for ComputeGroupsByNumber Function
// Group OPFOR units from a set U of units into a fixed
// number of N subgroups using edge weighting or distance Figure 2. Grouping of units using MST clustering without terrain

or elevation (TIGER screen shot). // function embedded in ‘world view’ W. Returns a forest
// of N minimum spanning trees corresponding to groups.

ComputeGroupsByNumber (U, W, N)
{

// Compute MST of units in set U
T MST(OPFOR(U))
// Sort edges in T by length, ascending
E sortAscending(edges(T))

7/13/2007 - Page 2 of 8

//Remove N longest edges.
while (N > 1)

e pop(E)
T delete(e,T)
N N -1

// Return forest of MSTs
return(T)

}

Once groups have been determined by either method addi-
tional factors, e.g. ROI (see Figure 3) can be added to the
analysis of the maneuver implementations. Some maneu-
vers require specific additional information such as “center
of mass” of a group or determination of flank units.

2.3. Computing Flanks after Units are sorted into
Groups
Computing the flanks of these groups is necessary for, e.g.,
the implementation of the envelopment and turning maneu-
vers. The function:

CalculateLeftFlank(U)
returns the flank unit, an element of OPFOR(U). Calcu-
lateRightFlank(U) is analogous. The flank units of any
group are the two units that have the greatest degree of
separation as determined by the weighting function. Left
and right are determined by the position of MYFOR(U).

2.4. Computing Gap Edges
A gap edge is an edge of the MST that is removed to create
a group:
 GapEdges(T)
where T is a forest of MSTs; this function returns a set of
edges. Since these edges were all part of the original MST,
they represent the shortest separating edge between groups.

2.5. Computing Centers
Computing the geographical center of a group is necessary
for both the envelopment and the frontal attack maneuvers.
The geographical center of a group is calculated by sum-
ming the location of every unit in the group weighted by

the strength of the unit, returning the resulting average lo-
cation:
 CalculateCenter(U)
where U is a set of units. The function returns a location.

2.6. Pathfinding
Each maneuver described here assumes that we have the
ability to plot, for a specified unit, the "best" path to an
assigned objective, subject to appropriate constraints and
guided by a utility function based on the current world
view W (which includes, e.g., enemy ROI, line of sight,
etc.):
 FindPath(u, G, B, o, W)
where u is a unit, G a collection of "gap edges", B a collec-
tion of “barrier edges” o is an objective, given as a location
in graph coordinates and W is the unit u’s world view. Ele-
ments of G and B may be either edges (i.e., line segments
defined between two graph coordinates) or rays (i.e., lines
rooted at a graph coordinate and extending to infinity along
a given direction) which are used to impose restrictions on
the legal solutions: A solution path produced by FindPath
must traverse at least one of the edges given in G and none
of the edges in B. Internally, such a function might use an
A* path finding algorithm guided by a heuristic to mini-
mize exposure and maximize concealment of the moving
unit, should that be the nature of the prespecified utility
function [18] (see also [19]). Finally, the function should
return a measure of quality of the path constructed, so that
two paths computed separately can be directly compared
according to the utility function used to construct them.

Figure 3. Grouping of units using MST clustering with ROI
displayed without terrain or elevation (TIGER screen shot)

These algorithms assume that the ultimate objectives have
been set by a higher level in the command structure and
that these maneuvers are being implemented in response to
OPFOR that are encountered en route to the ultimate objec-
tive. These algorithms are implementations of tactical ma-
neuvers within a tactical situation and are not part of the
strategic level decision making process per se.

3.0. Algorithms for Implementing the Five Canonical
Offensive Maneuvers
We next present the algorithms for implementing the five
canonical offensive maneuvers.

3.1. Implementing the Penetration Maneuver
The penetration maneuver can be divided into two phases:
in the first phase the attacker concentrates forces to strike at
an enemy’s weak point; the second phase is to break
through the position and rupture the defense. The attacker
then passes forces through the gap created to defeat the
enemy with attacks into his flanks and rear (see Figure 4)
[4], in order to obtain a prespecified objective.
We use the term ‘Schwerpunkt’ as the point of attack or the
“decisive point” [20]. To implement the penetration ma-
neuver we must calculate the Schwerpunkt; in this case the
weakest point of the OPFOR.

7/13/2007 - Page 3 of 8

Algorithm for Penetration Maneuver
// For every MYFOR unit from a set U of units assign an
// edge (the Schwerpunkt) which is the enemy’s weakest
// point and calculate a path from the unit’s current
// location to the appropriate objective from the set of
// objectives O via the Schwerpunkt. Return the set of
// paths P.

PenetrationManeuver(U,W,O)
{

 // Divide OPFOR into 2 groups
T ComputeGroupsByNumber(U, W, 2)
// Edge of lowest weight connecting two groups
// is the Schwerpunkt
S GapEdges(T)
P {}
for u in MYFOR(U)
 P P ∪ {FindPath(u, S, T,

 mapObjective(u, O,W))}
 return(P)
 }

Upon completion of the penetration maneuver another ma-
neuver, such as the turning movement using either, or both,
OPFOR groups, may be employed to exploit the rupture in
the defensive line (see Figure 4).

3.2. Implementing the Infiltration Maneuver
The infiltration maneuver is defined as a, “form of maneu-
ver in which combat elements conduct undetected move-
ment (mounted or dismounted) through or into an area oc-
cupied by enemy forces to occupy a position of advantage
in the enemy's rear.” [4] In our implementation we assume
that the attacking forces have multiple objectives that are
set a priori by SMEs prior to implementation.

Figure 4. The penetration maneuver from U. S. Army
Field Manual 3-21.

Figure 6. The infiltration maneuver from U. S. Army
Field Manual 3-21,

Algorithm for Infiltration Maneuver

// For every MYFOR unit from a set U of units assign an
// objective o in a set of objectives O which have been
// placed by an SME and calculate a path from the unit’s
// current location to the nearest objective subject to the
// constraint that OPFOR groups are separated by a
// minimum safe infiltration threshold, dMin. Return
// the set of paths P.

InfiltrationManeuver(U, W, O, dMin)
{

T ComputeGroupsByThreshold(U, W, dMin)
// If the number of trees is less then the size of O + 1
// attempt to recalculate trees by using alternative
// method
if (NumGroups(T) < O + 1)
 T ComputeGroupsByNumber(OPFOR(U),
 W, SizeOf(O)+1)
// Map units to nearest Objective
P {}
 for u in MYFOR(U)
 P P ∪ {FindPath(u, GapEdges(T), T,
 mapObjective(u, O,W))}
 return(P)

}

Figure 5. Example of the penetration maneuver from the
TIGER test-bed program.

7/13/2007 - Page 4 of 8

3.3. Implementing the Turning Movement
The turning movement is designed for the attacking forces
to pass around the OPFOR flanks and avoid contact with
OPFOR units; it then secures an objective that causes the
enemy to move out of its current position or divert forces to
meet the threat [4]. In our implementation we assume that
the attacking forces have an objective that is set a priori by
SMEs prior to implementation.

Algorithm for Turning Movement
// For every MYFOR unit from a set U of units assign the
// objective o which has been placed by an SME and
// calculate a path from the unit’s current location to o
// avoiding OPFOR and their ROI as represented in world
// view W. Returns set of paths P with highest utility
// between left turning paths Pl and right turning paths Pr.

TurningManeuver(U, W, o)
{
 c CalculateCenter(OPFOR(U));
 l CalculateLeftFlank(OPFOR(U));
 r CalculateRightFlank(OPFOR(U));
 Pr Pl {}

 for u in MYFOR(U)
 Pr Pr ∪ {FindPath(u, {ray(c, r)}, T,
 mapObjective(u, O, W))}
 Pl Pl ∪ {FindPath(u, {ray(c, l)}, T,
 mapObjective(u, O, W))}
 if (utility(Pr)>utility(Pl))
 return(Pr)
 else
 return(Pl)
}

Figure 7. Example of the infiltration maneuver from the TIGER
test-bed program.

Figure 9. Example of the turning movement from the TIGER
test-bed program (note restricted ROI due to limited LOS).

3.4. Implementing the Envelopment Maneuver
In the envelopment maneuver the attacker attempts to fix
the defender with supporting attacks (the fixing force)
while he maneuvers the main attack around the enemy’s
defenses to strike at the flanks, the rear, or both (the flank-
ing forces) [4]. The steps for implementing the envelop-
ment maneuver are:

Figure 8. The turning movement from U. S. Army Field
Manual 3-21,

1. Detecting the flanks of OPFOR
2. Calculating the objective for the flanking forces.
3. Calculating the objective for the fixing forces.
4. Divided the offensive forces into flanking and fix-

ing forces based on a percentage set by an SME
(the default value in the TIGER test-bed program
is 60% of forces assigned to the flanking objec-
tive, though this value is adjustable by the user).

5. Plot paths from units to assigned objectives.

7/13/2007 - Page 5 of 8

Algorithm for Envelopment Maneuver
// Determine the number of MYFOR(U) assigned to, Nfix
// the Fixing Force, and Nflank the Flanking Force based on
// the FlankingForcePercentage (which is SME defined).
// Calculate the left and right flank units of OPFOR.
// Determine the optimality of either Pl

 or Pr to their
// respective objectives. For every unit assigned to the
// Flanking Objective plot a path from the unit’s current
// location to the objective avoiding OPFOR ROI.
// For every unit assigned to the Fixing Force plot a path to
// the Fixing Objective c. Return the paths in P, a set of
// paths.

EnvelopmentManeuver(U, W)
{
 // Calculate size of flanking and fixing forces.
 Nflank (FlankingForcePercentage/100)*|MYFOR(U)|
 Nfix |MYFOR(U)| - Nflank
 // Find OPFOR center
 c CalculateCenter(OPFOR(U))
 // Find left and right flanks of OPFOR(U)

 // with respect to MYFOR(U)
 l CalculateLeftFlank (U)
 r CalculateRightFlank (U)
 // Initialize alternate left and right path sets
 Pl Pr {}
 // Find paths around both left and right
 // flanks of OPFOR; only one will eventually
 // be used.
 for u in MYFOR(U)
 Pl Pl ∪{FindPath(u, {ray(c,l)}, T,
 mapObjective(u, O, W)}
 Pr Pr ∪{FindPath(u, {ray(c,r)}, T,
 mapObjective(u, O, W)}
 // Evaluate the utility of the top
 // FlankingForcePercentage paths in both path sets.
 // The higher scoring direction will be used.
 Ur Ul 0
 for p in sortDescending(Pl) as i from 1 to Nflank
 Ul Ul + utility(p)
 for p in sortDescending(Pr) as i from 1 to Nflank
 Ur Ur + utility(p)
 // Pick flank with best utility value for flanking
 // forces based on best FlankingForcePercentage
 // paths. Return set of paths including new paths
 // for the fixing forces.
 P {}
 if (Ul > Ur)
 // Go left; accept top Nflank flanking paths
 for p in sortDescending(Pl) as i from 1 to Nflank

 P P ∪{p}
 // Add fixing paths for Nfix units with worst
 // flanking paths
 for (p in sortAscending(Pl) as i from 1 to Nfix

 P P ∪{FindPath(unit(p), {}, {}, c)}
 else
 // Go right; accept top Nflank flanking paths
 for p in sortDescending(Pr) as i from 1 to Nflank

 P P ∪{p}
 // Add fixing paths for Nfix units with worst
 // flanking paths
 for (p in sortAscending(Pr) as i from 1 to Nfix

 P P ∪{FindPath(unit(p), {}, {}, c)}
 // Done; return collection of paths.
 return(P)
}

Figure 10. The envelopment maneuver from U. S. Army Field
Manual 3-21,

Figure 11. The envelopment maneuver without terrain or eleva-
tion displayed. Unit objectives shown as thick blue lines. The

thin green line is the longest edge; its vertices are the flank units.
TIGER screen shot.

7/13/2007 - Page 6 of 8

3.5. Implementing the Frontal Attack Maneuver
The frontal attack is the least desirable form of maneuver
because it exposes the majority of the offensive force to the
concentrated fires of the defenders [4]. To minimize at-
tacker casualties would require a detailed analysis of ter-
rain, elevation, weapons, covering and suppressing fire, as
well as other factors and, consequently, is beyond the scope
of this paper. Our simplified algorithm for movement of
units follows.

Algorithm for Frontal Attack Maneuver
// For every MYFOR unit from a set U of units assign a
// goal (the weighted center of OPFOR) and calculate a
// path from the unit’s current location to the goal and
// return the paths in P a set of paths.

FrontalAttack(U, W)
{
 c CalculateCenter(OPFOR(U))
 P {}
 for u in MYFOR(U)
 P P ∪ {FindPath(u, {}, {}, c, W)}
 return(P)
}

Figure 12. Rommel’s envelopment maneuver (Gazala June 1942)
imported from the West Point Atlas[20] into TIGER. TIGER’s

version of the envelopment maneuver has been overlayed on the
same map. TIGER screen shot.

Figure 14. The frontal attack maneuver from the TIGER test-
bed program. TIGER screen shot.

4. Conclusions
We have presented here a basic set of algorithms that can
be utilized in any land warfare CGF environment in which
subordinate units are required to implement the offensive
orders of a superior unit or Command Entity. We have im-
plemented and tested these algorithms within TIGER, our
test-bed environment. We have also begun experimenting
with importing maps from the West Point Atlas [21], plac-
ing units accordingly, and observing the results (see Figure
12). Preliminary results seem to confirm that these algo-
rithms can accurately recreate historical offensive maneu-
vers under appropriate conditions.

Figure 13. The envelopment maneuver from the TIGER test-bed
program. TIGER screen shot.

5. Further Research
It has been said that the “holy grail of CE designers is a
system that can learn tactics and doctrine” [22]. We intend
to expand our TIGER test-bed program and incorporate
learning capabilities (via a Support Vector Machine sys-
tem) which is reactive, and can learn, from experience or
textbooks: specifically utilizing digitized images of battle-
field maps from the West Point Atlas as a training set [21].
Our preliminary experiments with importing West Point
Atlas maps suggest this approach may well be feasible (see
Figure 12 in which we have imported the West Point Atlas
map of Rommel at Gazala, June 1942 and TIGER issued
similar, but not identical, unit orders). We also anticipate
further work on fine-tuning our algorithms for implement-
ing the five canonical offensive maneuvers.

7/13/2007 - Page 7 of 8

Acknowledgements
We would like to thank Professors Jim Cremer, Joe Kear-
ney, Hwan Jo Yu and Steve Bruell of the University of
Iowa Department of Computer Science and Professor
Rosemary Moore of the University of Iowa Department of
Classics for their insightful comments and suggestions. We
would like to thank LTC John R. “Buck” Surdu, Ph.D. who
first suggested this line of research.

References
[1]. Calder, Robert B, et al. “Architecture of a Command

Forces Command Entity.” Paper presented at the 6th Con-
ference on Computer Generated Forces and Behavioral
Representation. Orlando, FL, July 23-25, 2004.

[2]. Hunter, Keith O., and William E. Hart. A Naturalistic De-
cision Making Model for Simulated Human Combatants.
Sandia National Laboratories no. SAND2000-0974. Albu-
querque, NM: Sandia National Laboratories, 2000.

[3]. Jaurez-Espinosa, Octavio, and Cleotilde Gonzalez. “Situa-
tion Awareness of Commanders: A Cognitive Model.” Pa-
per presented at the 7th Conference on Computer Gener-
ated Forces and Behavioral Representation, May, 2005.

[4]. U. S. Army Field Manual 3-21.21. U. S. Army Field Man-
ual (FM) 3-21.21 The Stryker Brigade Combat Team Infan-
try Battalion. Washington DC: Headquarters, Department
of the Army, 2003.

[5]. Pongracic, Helen, Peter Clark, and Arvind Chandran. Inte-
grating Intelligent Agents with a Human-in-the-Loop Simu-
lation. Air Operations Division. Melbourne, Victoria, Aus-
tralia: Defence Science and Technology Organisation,
2000.

[6]. Dunnigan, James. F. The Complete Wargames Handbook.
New York: Quill, 1992.

[7]. Tozour, P. “Influence Mapping.” Game Programming
Gems 2. Ed. M. Deloura. Hingham, MA: Charles River
Media, 2001. 287-97.

[8]. Sweetser, Penny. “Strategic Decision-Making with Neural
Networks and Influence Maps.” AI Game Programming
Wisdom 2. Ed. Steve Rabin. Hingham, MA: Charles River
Media, 2004. 439-46.

[9]. Sweetser, Penelope. “An Emergent Approach to Game
Design - Development and Play.” Diss. School of Informa-
tion Technolgy and Electrical Engineering, The University
of Queensland, 2006.

[10]. Sidran, David Ezra. “A Calculated Strategy: Readings Di-
rected Towards the Creation of a Strategic Artificial Intel-
ligence.” Computer Science, University of Iowa, 2004.
Viewed May 3, 2007
http://www.cs.uiowa.edu/~dsidran/ReadingsForResearch2.
pdf.

[11]. ---. “Good Decisions Under Fire: Human-Level Strategic
and Tactical Artificial Intelligence in Real-World Three-
Dimensional Environments.” Computer Science, Univer-
sity of Iowa, April 23 2007. Viewed May 3,
http://cs.uiowa.edu/~dsidran/GoodDecisionsUnderFire.pdf

[12]. Crawford, Chris. Chris Crawford on Game Design. Indian-
apolis, IN: New Riders, 2003.

[13]. Penner, Robin R., and Erik S. Steinmetz. “JointAdvisor:
An Intelligence Analysis Agent.” Paper presented at the
ARL Consortium Conference. Army Research Labs, 2000..

[14]. Wintermute, Sam, Joseph Xu, and John E. Laird. “SORTS:
A Human-Level Approach to Real-Time Strategy AI.” As-
sociation for the Advancement of Artificial Intelligence
(Paper not yet published) (2007).

[15]. Kruskal, J. B. “On the Shortest Spanning Subtree and the
Traveling Salesman Problem.” Proceedings of the Ameri-
can Mathematical Society 7 (1956): 48-50.

[16]. Zahn, C. T. “Graph Theoretic Methods for Detecting and
Describing Gestalt Clusters.” IEEE Transactions on Com-
puting, 1971

[17]. Bresenham, Jack E. “Algorithm for Computer Control of a
Digital Plotter.” IBM Systems Journal 4(1) (1965): 25-30.

[18]. Hart, P. E., N. J. Nilsson, and B. Raphael. “A Formal Basis
for The Heuristic Determination of Minimum Cost Paths.”
IEEE Transactions on Systems, Science and Cybernetics
4(2) (1968).

[19]. Beeker, Emmet. “Potential Error in the Reuse of Nilsson's
A Algorithm for Path-Finding in Military Simulations.”
JDMS 1.2 (April 2004): 91-97.

[20]. von Mellenthin, F. W. Panzer Battles: A Study of the Em-
ployment of Armor in the Second World War. New York:
Ballantine Books, 1956.

[21]. Griess, Thomas. E. The West Point Military History Series
Atlas for Thge Second World War (Europe and the Medi-
terranean). Wayne, NJ: Avery Publishing Group, 1953.

[22]. Howard, Michael D. “Modeling Command Entities.” Plan-
ning and Scheduling. International Joint Conference on Ar-
tificial Intelligence, 1997.

.

7/13/2007 - Page 8 of 8

	1. Introduction
	2. Building Blocks of Offensive Maneuvers
	2.1. Range of Influence
	2.2. Groups and Lines
	2.3. Computing Flanks after Units are sorted into Groups
	2.4. Computing Gap Edges
	2.5. Computing Centers
	2.6. Pathfinding
	3.0. Algorithms for Implementing the Five Canonical Offensive Maneuvers
	3.1. Implementing the Penetration Maneuver
	3.2. Implementing the Infiltration Maneuver
	
	 3.3. Implementing the Turning Movement
	3.4. Implementing the Envelopment Maneuver
	
	3.5. Implementing the Frontal Attack Maneuver
	
	
	4. Conclusions
	5. Further Research

